Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach.
نویسندگان
چکیده
Sensing using surface plasmon resonances is one of the most promising practical applications of plasmonic nanostructures and Fano resonances allow achieving a lower detection limit thanks to their narrow spectral features. However, a narrow spectral width of the subradiant mode in a plasmonic system, as observed in the weak coupling regime, is in general associated with a low modulation of the complete spectral response. In this article, we show that this limitation can be overcome by a nonlinear approach based on second harmonic generation and its dependence on symmetry at the nanoscale. The Fano resonant systems considered in this work are gold nanodolmens. Their linear and nonlinear responses are evaluated using a surface integral equation method. The numerical results demonstrate that a variation of the refractive index of the surrounding medium modifies the coupling between the dark and bright modes, resulting in a modification of the electromagnetic wave scattered at the second harmonic wavelength, especially the symmetry of the nonlinear emission. Reciprocally, we show that evaluating the asymmetry of the nonlinear emission provides a direct measurement of the gold nanodolmens dielectric environment. Interestingly, the influence of the refractive index of the surrounding medium on the nonlinear asymmetry parameter is approximately 10 times stronger than on the spectral position of the surface plasmon resonance: hence, smaller refractive index changes can be detected with this new approach. Practical details for an experimental realization of this sensing scheme are discussed and the resolution is estimated to be as low as Δn = 1.5 × 10(-3), respectively 1.5 × 10(-5), for an acquisition time of 60 s for an isolated gold nanodolmen, respectively an array of 10 × 10 nanodolmens.
منابع مشابه
Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing.
IO N Plasmonics has recently received a tremendous amount of attention, in particular, due to its potential for generating exceptionally large optical fi eld enhancements in cubic-nanometer volumes. Among the many unique features of plasmonic structures, this fi eld enhancement phenomenon has inspired researchers to construct refractive index sensors that utilize localized surface plasmon reson...
متن کاملMultiple Fano resonances in single-layer nonconcentric core-shell nanostructures.
Multiple plasmonic Fano resonances are generally considered to require complex nanostructures, such as multilayer structure, to provide several dark modes that can couple with the bright mode. In this paper, we show the existence of multiple Fano resonances in single layer core-shell nanostructures where the multiple dark modes appear due to the geometrical symmetry breaking induced by axial of...
متن کاملPlasmonic Nanostructures for Nano-Scale Bio-Sensing
The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realiz...
متن کاملRefractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures.
Plasmonic modes with long radiative lifetimes, subradiant modes, combine strong confinement of the electromagnetic energy at the nanoscale with a steep spectral dispersion, which makes them promising for biochemical sensors or immunoassays. Subradiant modes have three decay channels: Ohmic losses, their extrinsic coupling to radiation, and possibly their intrinsic dipole moment. In this work, t...
متن کاملElectrical modulation of fano resonance in plasmonic nanostructures using graphene.
Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant elements enhances the interaction of incident radiation with the graphene sheet and enables efficient ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 24 شماره
صفحات -
تاریخ انتشار 2014